

ADVANCED GCE UNIT

Mechanics 3 MONDAY 21 MAY 2007

Morning

4730/01

Time: 1 hour 30 minutes

Additional Materials: Answer Booklet (8 pages) List of Formulae (MF1)

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- The acceleration due to gravity is denoted by $g \,\mathrm{m \, s}^{-2}$. Unless otherwise instructed, when a numerical value is needed, use g = 9.8.
- You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72.

ADVICE TO CANDIDATES

- Read each question carefully and make sure you know what you have to do before starting your answer.
- You are reminded of the need for clear presentation in your answers.

This document consists of 4 printed pages.

© OCR 2007 [T/102/2703]

OCR is an exempt Charity

[Turn over

- 1 A particle P is moving with simple harmonic motion in a straight line. The period is 6.1 s and the amplitude is 3 m. Calculate, in either order,
 - (i) the maximum speed of *P*, [3]
 - (ii) the distance of P from the centre of motion when P has speed 2.5 m s^{-1} . [3]
- 2 A tennis ball of mass 0.057 kg has speed 10 m s^{-1} . The ball receives an impulse of magnitude 0.6 N s which reduces the speed of the ball to 7 m s^{-1} . Using an impulse-momentum triangle, or otherwise, find the angle the impulse makes with the original direction of motion of the ball. [7]
- 3 A particle P of mass 0.2 kg is projected horizontally with speed $u \,\mathrm{m \, s^{-1}}$ from a fixed point O on a smooth horizontal surface. P moves in a straight line and, at time t s after projection, P has speed $v \,\mathrm{m \, s^{-1}}$ and is x m from O. The only force acting on P has magnitude $0.4v^2$ N and is directed towards O.

(i) Show that
$$\frac{1}{v}\frac{\mathrm{d}v}{\mathrm{d}x} = -2.$$
 [2]

(ii) Hence show that $v = ue^{-2x}$. [4]

[4]

(iii) Find u, given that x = 2 when t = 4.

4

Two uniform smooth spheres A and B, of equal radius, have masses 4 kg and 3 kg respectively. They are moving on a horizontal surface, and they collide. Immediately before the collision, A is moving with speed 15 m s^{-1} at an angle α to the line of centres, where $\sin \alpha = 0.8$, and B is moving along the line of centres with speed 12 m s^{-1} (see diagram). The coefficient of restitution between the spheres is 0.5. Find the speed and direction of motion of each sphere after the collision. [10]

4730/01 Jun07

BX60°

(i) By taking moments about B for BC, calculate the tension in the string. Hence find the horizontal and vertical components of the force acting on BC at B. [7]

(ii) Find α .

6

attached to C (see diagram).

[4]

$Q \qquad P \qquad 3.5 \text{ m s}^{-1}$

A circus performer P of mass 80 kg is suspended from a fixed point O by an elastic rope of natural length 5.25 m and modulus of elasticity 2058 N. P is in equilibrium at a point 5 m above a safety net. A second performer Q, also of mass 80 kg, falls freely under gravity from a point above P. P catches Q and together they begin to descend vertically with initial speed 3.5 m s^{-1} (see diagram). The performers are modelled as particles.

- (i) Show that, when P is in equilibrium, OP = 7.25 m. [3]
- (ii) Verify that *P* and *Q* together just reach the safety net. [5]
- (iii) At the lowest point of their motion P releases Q. Prove that P subsequently just reaches O. [3]
- (iv) State two additional modelling assumptions made when answering this question. [2]

© OCR 2007

[Turn over

4

7

A particle P of mass 0.8 kg is attached to a fixed point O by a light inextensible string of length 0.4 m. A particle Q is suspended from O by an identical string. With the string OP taut and inclined at $\frac{1}{3}\pi$ radians to the vertical, P is projected with speed 0.7 m s⁻¹ in a direction perpendicular to the string so as to strike Q directly (see diagram). The coefficient of restitution between P and Q is $\frac{1}{2}$.

- (i) Calculate the tension in the string immediately after *P* is set in motion. [4]
- (ii) Immediately after P and Q collide they have equal speeds and are moving in opposite directions. Show that Q starts to move with speed 0.15 m s^{-1} . [4]
- (iii) Prove that before the second collision between *P* and *Q*, *Q* is moving with approximate simple harmonic motion. [5]
- (iv) Hence find the time interval between the first and second collisions of P and Q. [2]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

1	(i) $[\omega = 2\pi/6.1 = 1.03]$	M1		For using T = $2\pi/\omega$
		M1		For using $v_{max} = a \omega$
	Speed is 3.09ms ⁻¹	A1	3	
	(ii)	M1		For using $v^2 = \omega^2 (A^2 - x^2)$
				or for using $v = A \omega \cos \omega t$ and x
				$= A \sin \omega t$
	$2.5^2 = 1.03^2(3^2 - x^2)$	A1ft		ft incorrect ω
	or $x = 3\sin(1.03x0.60996)$			
	Distance is 1.76m	A1	3	
2	[Magnitudes 0.6, 0.057 x 7, 0.057 x 10]	M1		For triangle with magnitudes
				shown
	For magnitudes of 2 sides correctly marked	A1		
	For magnitudes of all 3 sides correctly marked	A1		
		M1		For attempting to find angle (α)
				opposite to the side of magnitude
				0.057 x 7
		M1		For correct use of the cosine rule
				or equivalent
	$0.399^2 = 0.57^2 + 0.6^2 - 2 \ge 0.57 \ge 0.6\cos \alpha$	Alft	_	
	Angle is 140°	Al	1	$(180 - 39.8)^{\circ}$
2	ALTERNATIVE METHOD	M1		
		MI		For using $I = \Delta mv$ parallel to the
				initial direction of motion
		A 1		or parallel to the impulse
	$-0.6\cos\alpha = 0.05 / x / \cos\beta - 0.05 / x 10$	AI		
	or $0.6 = 0.057 \times 10 \cos \alpha + 0.057 \times 7 \cos \gamma$			
		M1		For using I= Δ mv perpendicular
				to the initial direction of motion
				or perpendicular to the impulse
	$0.6\sin\alpha = 0.057 \text{ x } 7\sin\beta$	A1		
	or $0.057 \times 10 \sin \alpha = 0.057 \times 7 \sin \gamma$			
		M1		For eliminating β *or γ
	$0.399^2 = (0.57 - 0.6\cos \alpha)^2 + (0.6\sin \alpha)^2$	A 1 ft		
	or $0.399^2 = (0.6 - 0.57 \cos \alpha)^2 + (0.051 \cos \alpha)^2$	лш		
	$\frac{1}{4} \log \left(\frac{1}{2} \log \left(1$	Δ 1	7	$(180 20.8)^{0}$
1	Aligie IS 140	AI	/	(100 - 37.0)

3	(i) $[0.2v dv/dx = -0.4v^2]$	M1		For using Newton's second law
				with $a = v dv/dx$
	(1/v) dv/dx = -2	A1	2	AG
	(ii) $[\int (1/y) dy = \int -2 dx]$	M1		For separating variables and
				attempting to integrate
	$\ln v = -2x (+C)$	A1		
	$[\ln v = -2x + \ln u]$	M1		For using $v(0) = u$
	$v = ue^{-2x}$	A1	4	AG
	(iii) $\left[\int e^{2x} dx = \int u dt\right]$	M1		For using $v = dx/dt$ and
				separating variables
	$e^{2x}/2 = ut$ (+C)	A1		
	$\left[e^{2x}/2 = ut + \frac{1}{2}\right]$	M1		For using $x(0) = 0$
	u = 6.70	A1	4	Accept $(e^4 - 1)/8$
	ALTERNATIVE METHOD FOR PART (iii)			
	$\int \frac{1}{dt} dv = -2 \int dt \rightarrow -1/v = -2t + A$, and	M1		For using $a = dv/dt$, separating
	J_{v^2}			variables, attempting to integrate
	A = -1/u]			and using $v(0) = u$
		M1		For substituting $v = ue^{-2x}$
	$-e^{2x}/u = -2t - 1/u$	A1		
	u = 6.70	A 1	4	$\Lambda a = \frac{4}{1} \frac{1}{8}$
	u = 0.70	AI	4	Accept $(e - 1)/\delta$
	u – 0.70	AI	4	Αετερι (ε – 1)/8
4	$y = 15 \sin \alpha$ (=12)	B1	4	
4	$y=15\sin\alpha (=12) \\ [4(15\cos\alpha) - 3 \ge 12 = 4a + 3b]$	A1 B1 M1	4	For using principle of
4	$y=15\sin \alpha (=12) \\ [4(15\cos \alpha) - 3 \times 12 = 4a + 3b]$	B1 M1	4	For using principle of conservation of momentum in the
4	$y=15\sin\alpha (=12)$ [4(15\cos\alpha) - 3 x 12 = 4a + 3b]	B1 M1	4	For using principle of conservation of momentum in the direction of l.o.c.
4	$y=15\sin \alpha (=12)$ [4(15\cos \alpha) - 3 x 12 = 4a + 3b] Equation complete with not more than one error	B1 M1 A1	4	For using principle of conservation of momentum in the direction of l.o.c.
4	$y=15\sin \alpha (=12)$ $[4(15\cos \alpha) - 3 \times 12 = 4a + 3b]$ Equation complete with not more than one error $4a + 3b = 0$	A1 B1 M1 A1 A1	4	For using principle of conservation of momentum in the direction of l.o.c.
4	$y=15\sin \alpha (=12)$ $[4(15\cos \alpha) - 3 \times 12 = 4a + 3b]$ Equation complete with not more than one error $4a + 3b = 0$	A1 B1 M1 A1 A1 M1	4	For using principle of conservation of momentum in the direction of l.o.c. For using NEL in the direction of
4	$y=15\sin \alpha (=12)$ $[4(15\cos \alpha) - 3 \times 12 = 4a + 3b]$ Equation complete with not more than one error $4a + 3b = 0$	A1 B1 M1 A1 A1 M1	4	For using principle of conservation of momentum in the direction of l.o.c. For using NEL in the direction of l.o.c.
4	$y=15\sin \alpha (=12)$ $[4(15\cos \alpha) - 3 \times 12 = 4a + 3b]$ Equation complete with not more than one error $4a + 3b = 0$ $0.5(15\cos \alpha + 12) = b - a$	A1 B1 M1 A1 A1 M1 A1	4	For using principle of conservation of momentum in the direction of l.o.c. For using NEL in the direction of l.o.c.
4	$y=15\sin \alpha (=12)$ $[4(15\cos \alpha) - 3 \times 12 = 4a + 3b]$ Equation complete with not more than one error $4a + 3b = 0$ $0.5(15\cos \alpha + 12) = b - a$ $[a = -4.5, b = 6]$	A1 B1 M1 A1 A1 M1 A1 M1	4	For using principle of conservation of momentum in the direction of l.o.c. For using NEL in the direction of l.o.c. For solving for a and b
4	$y=15\sin\alpha (=12)$ $[4(15\cos\alpha) - 3 \times 12 = 4a + 3b]$ Equation complete with not more than one error $4a + 3b = 0$ $0.5(15\cos\alpha + 12) = b - a$ $[a = -4.5, b = 6]$ $[Speed = \sqrt{(-4.5)^2 + 12^2},$	A1 B1 M1 A1 A1 M1 A1 M1 M1	4	For using principle of conservation of momentum in the direction of l.o.c. For using NEL in the direction of l.o.c. For solving for a and b For correct method for speed or
4	$y=15\sin \alpha (=12)$ $[4(15\cos \alpha) - 3 \times 12 = 4a + 3b]$ Equation complete with not more than one error $4a + 3b = 0$ $0.5(15\cos \alpha + 12) = b - a$ $[a = -4.5, b = 6]$ $[Speed = \sqrt{(-4.5)^2 + 12^2},$ Direction $\tan^{-1}(12/(-4.50)]$	A1 B1 M1 A1 A1 M1 A1 M1 M1 M1	4	For using principle of conservation of momentum in the direction of l.o.c. For using NEL in the direction of l.o.c. For solving for a and b For correct method for speed or direction of A
4	$y=15\sin \alpha (=12)$ $[4(15\cos \alpha) - 3 \times 12 = 4a + 3b]$ Equation complete with not more than one error $4a + 3b = 0$ $0.5(15\cos \alpha + 12) = b - a$ $[a = -4.5, b = 6]$ $[Speed = \sqrt{(-4.5)^2 + 12^2},$ Direction tan ⁻¹ (12/(-4.50)] Speed of A is 12 8ms ⁻¹ and direction is 111°	A1 B1 M1 A1 A1 M1 A1 M1 M1 M1	4	For using principle of conservation of momentum in the direction of l.o.c. For using NEL in the direction of l.o.c. For solving for a and b For correct method for speed or direction of A
4	$y=15\sin \alpha (=12)$ $[4(15\cos \alpha) - 3 \times 12 = 4a + 3b]$ Equation complete with not more than one error $4a + 3b = 0$ $0.5(15\cos \alpha + 12) = b - a$ $[a = -4.5, b = 6]$ $[Speed = \sqrt{(-4.5)^2 + 12^2},$ Direction tan ⁻¹ (12/(-4.50)] Speed of A is 12.8ms ⁻¹ and direction is 111° anticlockwise from 'i' direction	A1 B1 M1 A1 A1 M1 A1 M1 M1 A1	4	For using principle of conservation of momentum in the direction of l.o.c. For using NEL in the direction of l.o.c. For solving for a and b For correct method for speed or direction of A Direction may be stated in any form including $\theta = 60^{\circ}$ with
4	y= 15sin α (=12) [4(15cos α) – 3 x 12 = 4a + 3b] Equation complete with not more than one error 4a + 3b = 0 0.5(15cos α + 12) = b - a [a = -4.5, b = 6] [Speed = $\sqrt{(-4.5)^2 + 12^2}$, Direction tan ⁻¹ (12/(-4.50)] Speed of A is 12.8ms ⁻¹ and direction is 111° anticlockwise from 'i' direction	A1 B1 M1 A1 A1 M1 A1 M1 A1	4	For using principle of conservation of momentum in the direction of l.o.c. For using NEL in the direction of l.o.c. For solving for a and b For correct method for speed or direction of A Direction may be stated in any form, including $\theta = 69^{\circ}$ with
4	y= 15sin α (=12) [4(15cos α) – 3 x 12 = 4a + 3b] Equation complete with not more than one error 4a + 3b = 0 0.5(15cos α + 12) = b - a [a = -4.5, b = 6] [Speed = $\sqrt{(-4.5)^2 + 12^2}$, Direction tan ⁻¹ (12/(-4.50)] Speed of A is 12.8ms ⁻¹ and direction is 111° anticlockwise from 'i' direction	A1 B1 M1 A1 A1 M1 M1 M1 A1	4	For using principle of conservation of momentum in the direction of l.o.c. For using NEL in the direction of l.o.c. For solving for a and b For correct method for speed or direction of A Direction may be stated in any form, including $\theta = 69^{\circ}$ with θ clearly and appropriately
4	y= 15sin α (=12) [4(15cos α) – 3 x 12 = 4a + 3b] Equation complete with not more than one error 4a + 3b = 0 0.5(15cos α + 12) = b - a [a = -4.5, b = 6] [Speed = $\sqrt{(-4.5)^2 + 12^2}$, Direction tan ⁻¹ (12/(-4.50)] Speed of A is 12.8ms ⁻¹ and direction is 111° anticlockwise from 'i' direction	A1 B1 M1 A1 A1 M1 A1 M1 M1 A1	4	For using principle of conservation of momentum in the direction of l.o.c. For using NEL in the direction of l.o.c. For solving for a and b For correct method for speed or direction of A Direction may be stated in any form, including $\theta = 69^{\circ}$ with θ clearly and appropriately indicated

5	(i)	M1		For taking moments of forces on
5	(1)	1411		BC about B
	$90 \times 0.722260^0 - 1.4T$	A 1		DC about D
	$30 \times 0.700800 = 1.41$			
	I ension is 201N	AI		
	$[X = 20\cos 30^\circ]$	MI		For resolving forces horizontally
	Horizontal component is 17.3N	Alft		ft $X = 1\cos 30^\circ$
	$[Y = 80 - 20\sin 30^{\circ}]$	M1		For resolving forces vertically
	Vertical component is 70N	Alft	7	$ft Y = 80 - T\sin 30^{\circ}$
	(ii)	M1		For taking moments of forces on
				AB, or on ABC, about A
	$17.3 \text{ x } 1.4 \sin \alpha = (80 \text{ x } 0.7 + 70 \text{ x} 1.4) \cos \alpha$ or	A1ft		
	$80x0.7\cos\alpha + 80(1.4\cos\alpha + 0.7\cos60^{\circ}) =$			
	$20\cos 60^{\circ}(14\cos \alpha + 14\cos 60^{\circ}) +$			
	$20\sin 60^{\circ}(1.4\sin \alpha + 1.4\sin 60^{\circ})$			
	$[\tan \alpha = (\frac{1}{6} 80 + 70)/17 3 = \frac{11}{2} \sqrt{2} 1$	M1		For obtaining a numerical
	$\left[\tan \alpha - (72.00 + 70)/17.5 - 11/\sqrt{5} \right]$	1111		α
	$\alpha = 91 1^0$	A 1	4	expression for tall a
	$u = \delta 1.1$	AI	4	
	ALTERNATIVE METHOD FOR BART (i)			
	ALTERNATIVE METHOD FOR PART (I)	N/1		
		MI		For taking moments of forces on
				BC about B
	$Hx1.4sin60^{\circ} + Vx1.4cos60^{\circ} = 80x0.7cos60^{\circ}$	Al		Where H and V are components of
				Т
		M1		For using H = V $\sqrt{3}$ and solving
				simultaneous equations
	Tension is 20N	Α1		sintertarioous equations
	Horizontal component is 17 3N	R1ft		ft value of H used to find T
	V = 20 V	M1		For resolving forces vertically
	$\begin{bmatrix} \mathbf{I} - 0\mathbf{U} - \mathbf{V} \end{bmatrix}$		7	for resolving forces vertically
	vertical component is /UN	AIII	/	It value of V used to find 1

U	(i) $[T = 2058x/5.25]$	M1		For using $T = \lambda x/L$
	$2058x/5.25 = 80 \times 9.8$ (x = 2)	A1		8
	OP = 7.25m	A1	3	AG From 5.25 + 2
	(ii) Initial $PE = (80 + 80)g(5)$ (= 7840)	B1		
	or $(80 + 80)$ gX used in energy equation			
	Initial KE = $\frac{1}{2}(80 + 80)35^2$ (= 980)	B1		
	$\text{Initial EE} = 2058 \times 2^2 / (2 \times 5.25) \qquad (= 784)$	M1		For using $FF = \lambda x^2/2I$
	Final $EE = 2058x7^2/(2x5.25)$ (= 9604), or			
	$2058(X + 2)^2/(2x5 25)]$			
	[Initial energy = 7840 + 980 + 784]	M1		For attempting to verify
	final energy = 9604	1,11		compatibility with the
	or $1568X + 980 + 784 = 196(X^2 + 4X + 4)$			principle of conservation of
	$196X^2 - 784X - 980 = 01$			energy or using the principle
				and solving for X
	Initial energy = final energy or $X = 5 \rightarrow P \otimes O$ just reach	A 1	5	AG
	the net	111	0	110
	(iii) [PF gain = $80g(725 + 5)$]	M1		For finding PF gain from net
	$(11) \qquad \begin{bmatrix} 1 \ D \ Gum & 00 \ G(7.25 + 5) \end{bmatrix}$	1011		level to O
	PE gain = 9604	A1		
	PE gain = EE at net level \rightarrow P just reaches O	A1	3	AG
	(iv) For any one of 'light rope' 'no air	B1		
	resistance'. 'no energy lost in rope'	21		
	For any other of the above	B1	2	
	FIRST ALTERNATIVE METHOD FOR			
	PART (ii)			
	[160g - 2058x/5.25 = 160v dv/dx]	M1		For using Newton's second
				law with $a = v dv/dx$,
				separating the variables and
				attempting to integrate
	$v^2/2 = gx - 1.225x^2 (+C)$	A1		Any correct form
	$v^2/2 = gx - 1.225x^2 (+C)$	A1 M1		Any correct form For using $v(2) = 3.5$
	$v^{2}/2 = gx - 1.225x^{2} (+C)$ C = -8.575	A1 M1 A1		Any correct form For using $v(2) = 3.5$
	$v^2/2 = gx - 1.225x^2$ (+ C) C = -8.575 [v(7) ²]/2 = 68.6 - 60.025 - 8.575 = 0 → P&Q just	A1 M1 A1 A1	5	Any correct form For using $v(2) = 3.5$ AG
	$v^{2}/2 = gx - 1.225x^{2} (+ C)$ C = -8.575 $[v(7)^{2}]/2 = 68.6 - 60.025 - 8.575 = 0 \Rightarrow P \& Q \text{ just}$ reach the net	A1 M1 A1 A1	5	Any correct form For using $v(2) = 3.5$ AG
	$v^2/2 = gx - 1.225x^2$ (+ C) C = -8.575 [v(7) ²]/2 = 68.6 - 60.025 - 8.575 = 0 → P&Q just reach the net	A1 M1 A1 A1	5	Any correct form For using $v(2) = 3.5$ AG
	$v^{2}/2 = gx - 1.225x^{2}$ (+ C) C = -8.575 [v(7) ²]/2 = 68.6 - 60.025 - 8.575 = 0 → P&Q just reach the net SECOND ALTERNATIVE METHOD FOR PART	A1 M1 A1 A1	5	Any correct form For using $v(2) = 3.5$ AG
	$v^{2}/2 = gx - 1.225x^{2} (+ C)$ C = -8.575 $[v(7)^{2}]/2 = 68.6 - 60.025 - 8.575 = 0 \Rightarrow P&Q just$ reach the net SECOND ALTERNATIVE METHOD FOR PART (ii)	A1 M1 A1 A1	5	Any correct form For using v(2) = 3.5 AG
	$v^{2}/2 = gx - 1.225x^{2}$ (+ C) C = -8.575 $[v(7)^{2}]/2 = 68.6 - 60.025 - 8.575 = 0 ightarrow P\&Q$ just reach the net SECOND ALTERNATIVE METHOD FOR PART (ii) $\ddot{x} = g - 2.45x$ (= -2.45(x - 4))	A1 M1 A1 A1 B1	5	Any correct form For using v(2) = 3.5 AG
	$v^{2}/2 = gx - 1.225x^{2}$ (+ C) C = -8.575 $[v(7)^{2}]/2 = 68.6 - 60.025 - 8.575 = 0 \rightarrow P&Q$ just reach the net SECOND ALTERNATIVE METHOD FOR PART (ii) $\ddot{x} = g - 2.45x$ (= -2.45(x - 4))	A1 M1 A1 A1 B1 M1	5	Any correct form For using $v(2) = 3.5$ AG For using $n^2 = 2.45$ and
	$v^{2}/2 = gx - 1.225x^{2}$ (+ C) C = -8.575 $[v(7)^{2}]/2 = 68.6 - 60.025 - 8.575 = 0 ightarrow P\&Q$ just reach the net SECOND ALTERNATIVE METHOD FOR PART (ii) $\ddot{x} = g - 2.45x$ (= -2.45(x - 4))	A1 M1 A1 A1 B1 M1	5	Any correct form For using $v(2) = 3.5$ AG For using $n^2 = 2.45$ and $v^2 = n^2(A^2 - (x - 4)^2)$
	$v^{2}/2 = gx - 1.225x^{2} (+ C)$ C = -8.575 [v(7) ²]/2 = 68.6 - 60.025 - 8.575 = 0 → P&Q just reach the net SECOND ALTERNATIVE METHOD FOR PART (ii) $\ddot{x} = g - 2.45x$ (= -2.45(x - 4)) 3.5 ² = 2.45(A ² - (-2) ²) (A = 3)	A1 M1 A1 A1 B1 M1 A1	5	Any correct form For using v(2) = 3.5 AG For using $n^2 = 2.45$ and $v^2 = n^2(A^2 - (x - 4)^2)$
	$v^{2}/2 = gx - 1.225x^{2} (+ C)$ C = -8.575 [v(7) ²]/2 = 68.6 - 60.025 - 8.575 = 0 → P&Q just reach the net SECOND ALTERNATIVE METHOD FOR PART (ii) $\ddot{x} = g - 2.45x$ (= -2.45(x - 4)) 3.5 ² = 2.45(A ² - (-2) ²) (A = 3) [(4 - 2) + 3]	A1 M1 A1 A1 B1 M1 A1 M1	5	Any correct form For using $v(2) = 3.5$ AG For using $n^2 = 2.45$ and $v^2 = n^2(A^2 - (x - 4)^2)$ For using 'distance travelled
	$v^{2}/2 = gx - 1.225x^{2} (+ C)$ C = -8.575 [v(7) ²]/2 = 68.6 - 60.025 - 8.575 = 0 → P&Q just reach the net SECOND ALTERNATIVE METHOD FOR PART (ii) $\ddot{x} = g - 2.45x$ (= -2.45(x - 4)) 3.5 ² = 2.45(A ² - (-2) ²) (A = 3) [(4 - 2) + 3]	A1 M1 A1 A1 B1 M1 A1 M1	5	Any correct form For using $v(2) = 3.5$ AG For using $n^2 = 2.45$ and $v^2 = n^2(A^2 - (x - 4)^2)$ For using 'distance travelled downwards by P and Q =
	$v^{2}/2 = gx - 1.225x^{2} (+ C)$ C = -8.575 [v(7) ²]/2 = 68.6 - 60.025 - 8.575 = 0 → P&Q just reach the net SECOND ALTERNATIVE METHOD FOR PART (ii) $\ddot{x} = g - 2.45x$ (= -2.45(x - 4)) $3.5^{2} = 2.45(A^{2} - (-2)^{2})$ (A = 3) [(4 - 2) + 3]	A1 M1 A1 A1 B1 M1 A1 M1	5	Any correct form For using $v(2) = 3.5$ AG For using $n^2 = 2.45$ and $v^2 = n^2(A^2 - (x - 4)^2)$ For using 'distance travelled downwards by P and Q = distance to new equilibrium
	$v^{2}/2 = gx - 1.225x^{2} (+ C)$ C = -8.575 [v(7) ²]/2 = 68.6 - 60.025 - 8.575 = 0 → P&Q just reach the net SECOND ALTERNATIVE METHOD FOR PART (ii) $\ddot{x} = g - 2.45x$ (= -2.45(x - 4)) 3.5 ² = 2.45(A ² - (-2) ²) (A = 3) [(4 - 2) + 3]	A1 M1 A1 A1 B1 M1 A1 M1	5	Any correct form For using $v(2) = 3.5$ AG For using $n^2 = 2.45$ and $v^2 = n^2(A^2 - (x - 4)^2)$ For using 'distance travelled downwards by P and Q = distance to new equilibrium position + A
	$v^{2}/2 = gx - 1.225x^{2} (+ C)$ C = -8.575 [v(7) ²]/2 = 68.6 - 60.025 - 8.575 = 0 → P&Q just reach the net SECOND ALTERNATIVE METHOD FOR PART (ii) $\ddot{x} = g - 2.45x$ (= -2.45(x - 4)) $3.5^{2} = 2.45(A^{2} - (-2)^{2})$ (A = 3) [(4 - 2) + 3] distance travelled downwards by P and O = 5 → P&O	A1 M1 A1 A1 M1 A1 M1 A1 M1	5	Any correct form For using $v(2) = 3.5$ AG For using $n^2 = 2.45$ and $v^2 = n^2(A^2 - (x - 4)^2)$ For using 'distance travelled downwards by P and Q = distance to new equilibrium position + A AG

7 (i)) $[a = 0.7^2/0.4]$	M1		For using $a = v^2/r$
Fc	or not more than one error in	A1		C C
	$T - 0.8gcos60^\circ = 0.8x0.7^2/0.4$			
A	bove equation complete and correct	A1		
Те	ension is 4.9N	A1	4	
(ii	i)	M1		For using the principle of conservation of energy
1/2	$0.8v^2 =$	A1		(v = 2.1)
1/2	$(20.8(0.7)^2 + 0.8g0.4 - 0.8g0.4 \cos 60^\circ)$			
(2	(2.1 - 0)/7 = 2u	M1		For using NEL
Q	's initial speed is 0.15ms ⁻¹	A1	4	AG
(ii	ii)	M1		For using Newton's second
(n	n)0.4 $\ddot{\theta}$ = -(m)g sin θ	A1		*Allow m = 0.8 (or any other numerical value)
[0	$0.4\ddot{\theta} \approx -g\theta$]	M1		For using $\sin \theta \approx \theta$
[]	$\frac{1}{2} \text{ m0.15}^2 = \text{mg0.4}(1 - \cos \theta_{\text{max}})$ $\Rightarrow \theta_{\text{max}} = 4.34^{\circ} (0.0758 \text{ rad})$]	M1		For using the principle of conservation of energy to find θ_{max}
θ SI	$P_{\rm max}$ small justifies 0.4 $\ddot{\theta} \approx -g \theta$, and this implies HM	A1	5	
(iv	v) $[T = 2 \pi / \sqrt{24 \cdot .5} = 1.269]$	M1		For using T = $2\pi/n$
	$\left[\sqrt{24}, 5, t = \pi\right]$			or
				for solving either $\sin nt = 0$
				(non-zero t) (considering
				displacement) or $\cos nt = -1$
				(considering velocity)
Ti	ime interval is 0.635s	A1ft	2	From $t = \frac{1}{2}T$